Limitations of the Carathéodory-Fejér Method for Polynomial Approximation

E. B. SAFF*
Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, Florida 33620, U.S.A.

AND
V. Totik ${ }^{+}$

Bolvai Institute, Aradi V. tere I, Szeged 6720, Hungary
Communicated by T. J. Rivlin
Received May 13, 1988

Abstract

Although the Carathéodory-Fejér method for obtaining polynomial approximants on a disk is quite effective for certain well-behaved functions, we show that it diverges for certain functions and. in general, does not provide better approximations than the partial sums of the Taylor expansion. © 1989 Academic Press, Inc.

1. Introduction and Results

The following theorem was proved by Caratheordory and Fejer (see, e.g., [1, p. 500]). Given a polynomial $p(z)=\sum_{k=0}^{n} c_{k} z^{k}$, there exists a unique power series extension $B(z)=p(z)+\sum_{k=n+1}^{\infty} c_{k}^{*} z^{k}$, analytic in the unit disk, that minimizes

$$
\|B\|:=\sup _{|z|<1}|B(z)|
$$

among all such extensions. Moreover, $B(z)$ is a finite Blaschke product and if $p(z) \not \equiv 0, B(z)$ has at most n zeros.

[^0]Here and in what follows, by a finite Blaschke product we mean a function of the form

$$
\begin{equation*}
\lambda \prod_{k=1}^{m} \frac{\alpha_{k}-z}{1-\bar{x}_{k} z} \cdot \frac{\left|x_{k}\right|}{x_{k}}, \tag{1.1}
\end{equation*}
$$

where $\left|\alpha_{k}\right|<1$ for all k and we do not exclude the case $\lambda=0$. If some $\alpha_{k}=0$, we set the corresponding factor in (1.1) equal to $-z$.

We call $B(z)$ the Carathéodory-Fejér (CF) extension of p and sometimes we will use the notation $B_{\mathrm{Cr}}(p)$ for it.

Let $f \in \mathscr{A}$, where \mathscr{A} denotes the disk algebra of functions that are continuous on the closed unit disk and analytic in its interior. We equip. $8 /$ with the supremum norm $\mathrm{i} \cdot \|$ and let

$$
E_{n}(f):=\inf _{p \in \Pi_{n}}\|f-p\|
$$

denote the error of the best polynomial approximation of f by algebraic polynomials of degree at most n.
Since there are few (if any) efficient algorithms for finding best polynomial approximants on planar sets, methods that give near-optimal approximations are of particular interest. Moreover, the "goodness" of any such method should be compared to the trivial method of using the partial sums of the Taylor expansion, which gives the order of approximation $\left\{E_{n}(f) \log n\right\}$.
In [4], L. Trefethen proposed a method, called the Carathéodory-Fejér method, for finding polynomial approximants of functions from .2 that is based on the above minimal norm extension result. The method can be described as follows. Let $f \in \mathscr{A}$ have Taylor expansion about $z=0$ of the form

$$
f(z) \sim \sum_{k-0}^{\infty} a_{k} z^{k} .
$$

The problem of best polynomial approximation to f is equivalent to the problem of minimizing

$$
\sum_{k=0}^{n} c_{k} z^{k}+\sum_{k=n+1}^{\infty} a_{k} z^{k} \mid
$$

over all $(n+1)$-tuples $\left(c_{0}, \ldots, c_{n}\right)$. This resembles the Carathéodory Fejér problem and the CF extensions (which are computable as the solution of certain eigenvalue problems) can be brought into the picture by using truncation and the inversion $z \rightarrow 1 / z$. Thus, following Trefethen [4], we first
truncate the Taylor series at some $L>n$ so that $\sum_{k \cdots L+1}^{\infty} a_{k} z^{k}$ is negligible and we set $p(z):=\sum_{k-n+1}^{L} a_{k} z^{k}, p^{*}(z):=z^{L} p(1 / z)$. Then we solve the CF problem for $p^{*}(z)$:

$$
B(z)=p^{*}(z)+\sum_{k=L \cdot-n}^{\infty} c_{k}^{*} z^{k}
$$

Finally, by truncating this series again at $k=L$ and $k=L-n-1$ and using inversion we arrive at a polynomial of degree at most n, which, when combined with the nth Taylor section for f, gives the desired approximation, which we will denote by $F_{n, L}(f ; z)$ (the L indicates where we truncated the Taylor series). In terms of the a_{k} 's and c_{k}^{*} 's we thus have

$$
F_{n, I}(f ; z)=\sum_{k=0}^{n} a_{k} z^{k}-\sum_{k=0}^{n} c_{I-k}^{*} z^{k}
$$

In [4] some results were obtained on the approximation properties of the CF method, but its performance for general functions has not been investigated. Despite this fact much enthusiasm has been expressed in connection with the goodness of the method and not without grounds, since in [4] it was shown that for certain well-behaved functions such as $\exp (z)$ the CF approximants are far better than the Taylor sections.

The aim of this paper is to describe the limitations of the CF method; as we will see, in general it is not better than what we can get from the Taylor sections. The results of this paper are anticipated in [2], where we found that the "near-circularity" property that the CF method was based on in [4] actually fails to hold for most of the functions in \mathscr{A}.

Strictly speaking the above description of the CF method is not complete since it does not state where to truncate the Taylor series or what is meant by "negligible." For certain results in [4] the truncations were performed at $L_{n}=2 n+2$, but actually no fixed sequence $\left\{L_{n}\right\}$ can serve as universally good truncation points. In fact, we have

Theorem 1. If $\left\{L_{n}\right\}$ is an arbitrary sequence $\left(L_{n}>n\right)$, then there is an $f \in \mathscr{A}$ such that

$$
\lim _{n \rightarrow \infty} \sup F_{n, L_{n}}(f ; 1)=\infty
$$

In fact, we can say more; namely, for most of the functions in \mathscr{A} (in the sense of category), $\left\{F_{n, L_{n}}(f)\right\}_{1}^{\infty}$ fails to converge at $z=1$ (let alone uniformly on the disk).

Theorem 1'. If $\left\{L_{n}\right\}$ is fixed, then the set of functions $f \in \mathscr{A}$ with the property

$$
\limsup _{n \rightarrow \infty}\left|F_{n . L_{n}}(f ; 1)\right|<\infty
$$

is of the first category in \mathscr{A}.
Theorems 1 and 1^{\prime}, whose proofs are deferred to Section 3, are not too surprising but suggest that one might try to improve the method by truncating the Taylor series sufficiently far depending on the function f and on n. However, as the next theorem shows, the finiteness of L is not important in the sense that all (sufficiently far) truncations can be uniformly bad if the resulting CF approximants are compared to best approximation.

Theorem 2. Suppose $L_{n}>c n, n=1,2, \ldots$, for some $c>1$. Then there exists an $f \in \&$ having a uniformly convergent Taylor series on $|z| \leqslant 1$ and a constant $c_{1}>0$ such that

$$
\inf _{L \geqslant L_{n}}\left|F_{n . L}(f ; 1)-f(1)\right| \geqslant c_{1} E_{n}(f) \log n
$$

holds for infinitely many n. This f can be taken to be entire.
Theorem 2, which we prove in Section 2, shows that no matter how far out ($>c n$) we truncate the Taylor expansion, we may not get a better approximation by $F_{n, L}$ than by the partial sums of the Taylor expansion. Of course, this does not contradict the fact that the CF method works well for certain subclasses of \mathscr{A}.

2. Proof of Thforem 2

Let $S_{n}(f)=S_{n}(f, z)$ be the nth partial sum of the Taylor expansion of f about zero. (Whenever we refer to a Taylor expansion, we assume it has center at zero.)

We will nced the following two simple lemmas.

Lemma 1. If B is a Blaschke product with at most v zeros, then the CF extension of $S_{\nu}(B)$ is B.

Proof. Let B_{1} be the $C F$ extension of $S_{v}(B)$, and set $\lambda:=\|B\|$, $\lambda_{1}:=\left\|B_{1}^{\prime}\right\|$. If $\lambda_{1}<\lambda$, then, by Rouche's theorem, $B-B_{1}$ has the same number of zeros in the unit disk as B, i.e., at most v zeros. But this contradicts the fact that, since $S_{v}\left(B-B_{1}: z\right) \equiv 0$, the origin is a zero of
$B-B_{1}$ with multiplicity at least $v+1$. Thus $\dot{\lambda}=\lambda_{1}$, and $B \equiv B_{1}$ follows from the uniqueness of B_{1}.

Lemma 2. Let n and L be fixed. Then $F_{n, I}(f)$ is a continuous function of f. More generally, if \mathscr{F} is (in \mathscr{A}) a compact family of functions, then for every $\varepsilon>0$ there exists $a \delta>0$ such that if $f \in \mathscr{F}, g \in \mathscr{A}$, and $\left\|f-g^{\prime}\right\|<\delta$, then $\left\|F_{n, L}(f)-F_{n, L}(g)\right\|<\varepsilon$.

Proof. It is enough to prove the first assertion. Notice that $F_{n, L}(f ; z)$ is constructed from the first $n+1$ Taylor coefficients of f and from the CF extension of a polynomial of degree $L-n-1$ which, in turn, is formed from $L-n$ Taylor coefficients of f. Thus all we have to prove is that, for each fixed k, the k th Taylor coefficient of $B_{C F}(p)$ depends continuously on p belonging to the set Π_{m} of polynomials of degree at most m ($m=L-n-1$). Here $B_{C F}(p)$ is understood as the CF extension of a polynomial of degree m even if some of the leading coefficients of p vanish.

It is important to notice that $B_{\mathrm{CF}}(p)$ itself is not a continuous function of p on Π_{m}. However, by Rouche's theorem, the norm of $B_{\mathrm{CF}}(p)$ is a continuous function of $p \in \Pi_{m}$ (cf. the preceding proof).

Suppose now that our claim is not true and there are a sequence $p_{v} \in \Pi_{m}$ and a k such that $p_{v} \rightarrow p$ as $v \rightarrow \infty$ in \mathscr{A} and yet the k th Taylor coefficients of $B_{\text {CF }}\left(p_{v}\right)$ converge to a number different from the k th Taylor coefficient of $B_{\mathrm{CF}}(p)$. Let

$$
B_{\mathrm{CF}}\left(p_{v}\right)=\lambda_{v} \prod_{k=1}^{\mu_{v}} \frac{\alpha_{k}^{(v)}-z}{1-\overline{x_{k}^{(v)} z}} \frac{\left|\alpha_{k}^{(v)}\right|}{\alpha_{k}^{(v)}}, \quad \mu_{v} \leqslant m,\left|x_{k}^{(v)}\right|<1
$$

and, by choosing a subsequence of $\left\{p_{v}\right\}$ if necessary, assume that all the μ_{v} 's are equal, say $\mu_{v}=\mu$, and the sequences $\left\{\lambda_{v}\right\}_{v=1}^{\alpha}$ and $\left\{\left(\alpha_{1}^{(\nu)}, \ldots, \alpha_{\mu}^{(\nu)}\right)\right\}_{v=1}^{\infty}$ converge to i and $\left(\alpha_{1}, \ldots, \alpha_{\mu}\right)$, respectively. In case some $\alpha_{j}=0$ and $\alpha_{j}^{(v)} \neq 0$ for all large v, we can also assume that $\left|\alpha_{j}^{(v)}\right| / \alpha_{j}$ converges to $\exp \left(i \theta_{j}\right)$ and we replace λ by the product $\lambda \exp \left(i \theta_{j}\right)$. With this convention we set

$$
B(z):=\lambda \prod_{k=1}^{\mu} \frac{\alpha_{k}-z}{1-\bar{\alpha}_{k} z} \cdot \frac{\left|\alpha_{k}\right|}{\alpha_{k}},
$$

where the prime indicates that the factors with $\left|\alpha_{k}\right|=1$ are omitted. Clearly, $B_{\text {CF }}\left(p_{v} ; z\right) \rightarrow B(z)$ as $v \rightarrow \infty$ uniformly on closed subsets of the interior of the unit disk; hence for every l the sequence of the l th Taylor coefficients of $B_{\mathrm{CF}}\left(p_{v}\right), v=1,2, \ldots$, converges to the l th Taylor coefficient of B. This yields

$$
S_{m}(B)=\lim _{v \rightarrow \infty} S_{m}\left(B_{\mathrm{CF}}\left(p_{v}\right)\right)=\lim _{v \rightarrow \infty} p_{v}=p
$$

while the continuity of the norm of the CF extensions implies

$$
\|B\|=|\lambda|=\lim _{v \rightarrow \infty}\left|\lambda_{v}\right|=\lim _{v \rightarrow \infty}\left\|B_{\mathrm{Cr}}\left(p_{v}\right)\right\|=B_{\mathrm{CF}}(p)^{i} .
$$

Thus, B and $B_{C F}(p)$ are both minimal $C F$ extensions of p and so $B=B_{\mathrm{CF}}(p)$. This, however, contradicts the assumption that B and $B_{\mathrm{CF}}(p)$ have different k th Taylor coefficients and this contradiction proves the lemma.

For a given v we now construct a special Blaschke product, a suitable partial sum of which will be the basic building block for the function f of Theorem 2.

Consider the so-called Fejer polynomials

$$
\sigma_{v}(z):=\left(\frac{1}{v}+\frac{z}{v-1}+\cdots+\frac{z^{v-1}}{1}\right)-\left(\frac{z^{v+1}}{1}+\frac{z^{v+2}}{2}+\cdots+\frac{z^{2 v}}{v}\right) .
$$

Since for $z=e^{i t}$ we have (cf. [3, 4.12.12])

$$
\left|\sigma_{v}(z)\right|=2\left|\sum_{k=1}^{v} \frac{\sin k t}{k}\right|<10
$$

we get for the CF extension $B\left(\sigma_{v}\right)=B_{\mathrm{CF}}\left(\sigma_{v}\right)$ of σ_{v} that

$$
\begin{equation*}
1 \leqslant\left\|B\left(\sigma_{v}\right)\right\| \leqslant 10 \tag{2.1}
\end{equation*}
$$

and at the same time

$$
\begin{equation*}
S_{v}\left(B\left(\sigma_{v}\right) ; 1\right)=S_{v}\left(\sigma_{v} ; 1\right)=\frac{1}{v}+\cdots+\frac{1}{1}>\log v \tag{2.2}
\end{equation*}
$$

Let the zeros of $B\left(\sigma_{v}\right)$ be $\alpha_{1}, \ldots, \alpha_{\mu}$. Suppose that of these $\alpha_{1}, \ldots, \alpha_{\mu_{1}}$ and only these have modulus at most $1-v^{-8}$, and let B_{v}^{*} be the Blaschke product with $\alpha_{1}, \ldots, \alpha_{\mu_{1}}$ as its zeros, $B_{v}^{*}(0)>0$, and with norm equal to $\left\|B\left(\sigma_{v}\right)\right\|$ (in other words, B_{v}^{*} is obtained from $B\left(\sigma_{v}\right)$ by dropping the Blaschke factors belonging to zeros of modulus bigger than $1-v^{-8}$). Then B_{v}^{*} has again at most $2 v$ zeros and we claim that, for large v,

$$
\begin{equation*}
S_{v}\left(B_{v}^{*} ; 1\right)>\log v-1 \tag{2.3}
\end{equation*}
$$

In fact, if $\beta_{k}\left(B\left(\sigma_{v}\right)-B_{v}^{*}\right)$ denotes the k th Taylor coefficient of $B\left(\sigma_{v}\right)-B_{v}^{*}, k=0,1,2, \ldots$, we have the upper bound

$$
\begin{align*}
\left|\beta_{k}\left(B\left(\sigma_{\nu}\right)-B_{v}^{*}\right)\right| & \leqslant \frac{10}{2 \pi} \int_{0}^{2 \pi}\left|\prod_{k-\mu_{1}+1}^{\mu} \frac{\alpha_{k}-e^{i t}}{1-\overline{\alpha_{k}} e^{i t}} \cdot \frac{\left|\alpha_{k}\right|}{\alpha_{k}}-1\right| d t \\
& \leqslant \frac{10}{2 \pi} \int_{[0,2 \pi 1 \backslash F}+\frac{10}{2 \pi} \int_{3 ;} \tag{2.4}
\end{align*}
$$

where \mathscr{F} is the union of the intervals of length $2 v^{4}$ having center at $\arg \alpha_{k}, \mu_{1}<k \leqslant \mu($ taken $\bmod 2 \pi)$. For the integral over $[0,2 \pi] \backslash \mathscr{F}$ we have the estimate

$$
\begin{align*}
& \frac{10}{2 \pi} \int_{[0,2 \pi] \backslash F}\left|\prod_{k-\mu_{1}+1}^{\mu}\left(1-\frac{\left(1-\left|\alpha_{k}\right|^{2}\right) e^{i t}}{\alpha_{k}-\left|\alpha_{k}\right|^{2} e^{i t}}\right)\right| \alpha_{k}\left|-\prod_{k=\mu_{1}+1}^{\mu}\right| \alpha_{k}| | d t \\
& \quad+10\left|\prod_{k=\mu_{1}+1}^{\mu}\right| \alpha_{k}|-1| \leqslant \frac{C}{v^{3}} \tag{2.5}
\end{align*}
$$

where C is an absolute constant, and where we have used that for t in $[0,2 \pi] \backslash \mathscr{F}$ and for every $\mu_{1}+1 \leqslant k \leqslant \mu$,

$$
\left|\frac{\left(1-\left|\alpha_{k}\right|^{2}\right) e^{i t}}{\alpha_{k}-\left|\alpha_{k}\right|^{2} e^{i t}}\right|<\frac{2\left(1-\left|\alpha_{k}\right|\right)}{\left|\alpha_{k}\right| / 2 v^{4}}<\frac{10}{v^{4}}
$$

for v sufficiently large.
On \mathscr{F} the integrand in (2.4) is bounded by 2 and meas $(\mathscr{F}) \leqslant 2 v \cdot 2 v^{-4}=$ $4 v^{\cdot 3}$, which, together with (2.4) and (2.5), yields

$$
\left|\beta_{k}\left(B\left(\sigma_{v}\right)-B_{v}^{*}\right)\right| \leqslant(C+80) v^{-3}
$$

Thus, we obtain the coefficients of B_{v}^{*} from those of $B\left(\sigma_{v}\right)$ by perturbations of order at most $(C+80) v^{-3}$ and so (2.3) follows from (2.2).

Our next aim is to estimate the modulus of continuity of B_{v}^{*} on the unit circumference. Since B_{v}^{*} is a Blaschke product with at most $2 v$ zeros and of norm at most 10 (cf. (2.1)) and each of its zeros lies in the disk $\left\{z:|z| \leqslant 1-v^{8}\right\}$, a trivial estimate yields that, for every t,

$$
\left|\left(B_{v}^{*}\right)^{\prime}\left(e^{i t}\right)\right| \leqslant 20 \cdot 2 v \cdot v^{8}=40 v^{9} .
$$

This gives that the modulus of continuity of $B_{v}^{*}\left(e^{i t}\right)$ is at most

$$
\omega\left(B_{v}^{*}\left(e^{i \cdot}\right) ; \delta\right) \leqslant 40 v^{9} \delta,
$$

and so we get for the k th partial sum of the Taylor expansion of B_{v}^{*} the estimate (cf. [3, 5.11.7])

$$
\left\|S_{k}\left(B_{v}^{*}\right)-B_{v}^{*}\right\| \leqslant 10^{3} v^{9} \frac{1}{k} \log k \leqslant 1
$$

if $k>v^{10}$ and v is sufficiently large.

Summarizing, for B_{v}^{*} we have for all large v

$$
S_{v}\left(B_{v}^{*} ; 1\right)>\log v-1
$$

and for $k \geqslant v^{10}$

$$
\left\|S_{k}\left(B_{v}^{*}\right)\right\| \leqslant 20
$$

Now set

$$
B_{v}(z):=B_{v}^{*}(z) \frac{1 / 2-z^{v^{10}}}{1-z^{.10} / 2}
$$

Clearly, B_{v} is a Blaschke product with at most $2 v+v^{10}<2 v^{10}$ zeros, and since

$$
\frac{1 / 2-z^{\nu^{10}}}{1-z^{10} / 2}=\frac{1}{2}-\frac{3}{4} z^{{ }^{10}}-\frac{3}{4} \cdot \frac{1}{2} z^{2 v^{10}}-\frac{3}{4} \cdot \frac{1}{2^{2}} z^{3 v^{10}}-\cdots
$$

we have, for $k=1,2, \ldots$,

$$
\begin{align*}
&\left\|S_{k v} v^{10}\left(B_{v}\right)\right\|=\| \frac{1}{2} S_{k v^{10}}\left(B_{v}^{*}\right)-\frac{3}{4} z^{v^{10}} S_{(k \cdot 1) v^{10}\left(B_{v}^{*}\right)-\cdots-\frac{3}{4}\left(\frac{1}{2}\right)^{k-1} z^{k \cdot 10} S_{0}\left(B_{v}^{*}\right) \|} \\
& \leqslant\left[\frac{1}{2}+\frac{3}{4}\left(1+\frac{1}{2}+\cdots\right)\right] 20 \leqslant 40 \tag{2.6}
\end{align*}
$$

and at the same time (cf. (2.3))

$$
\begin{align*}
& \left|S_{k v^{10}+v}\left(B_{v} ; 1\right)\right| \\
& \left.\quad=\left\lvert\, \frac{1}{2} S_{k v v^{10}+v}\left(B_{v}^{*} ; 1\right)-\frac{3}{4} S_{(k} 1\right.\right) \left.v^{10}+v\left(B_{v}^{*} ; 1\right)-\cdots-\frac{3}{4} \cdot \frac{1}{2^{k} 1} S_{v}\left(B_{v}^{*} ; 1\right) \right\rvert\, \\
& \quad>\frac{3}{4} \cdot \frac{1}{2^{k}}(\log v-1)-\left[\frac{1}{2}+\frac{3}{4}\left(1+\frac{1}{2}+\cdots\right)\right] 20>\frac{1}{2^{k}} \log v-50 . \tag{2.7}
\end{align*}
$$

We now return to our construction. By assumption, there is a $c>1$ with $L_{n} \geqslant c n, n=1,2, \ldots$. We choose the smallest positive integer k_{0} such that $(c-1) k_{0}>2$. For each v let n_{v} be defined by $n_{v}:=k_{0} v^{10}+v-1$ and set

$$
g_{v}(z):=S_{2 v^{10}}\left(B_{v} ; \frac{1}{z}\right) z^{2 v^{10}+n_{v}+i} .
$$

Since the first ($n_{v}+1$) Taylor coefficients of g_{v} vanish, in computing $F_{n_{v}, L}\left(g_{v}\right)$ for v large and

$$
L \geqslant L_{n_{v}} \geqslant c n_{v} \geqslant n_{v}+2 v^{10}+1=\operatorname{deg} g_{v}
$$

we have to take the CF extension of

$$
\begin{aligned}
& g_{v}\left(\frac{1}{z}\right) z^{L}=S_{2 v}{ }^{10}\left(B_{v} ; z\right) z^{L-2 v^{10}} n_{\mathrm{r}} \quad 1 \\
&=S_{L \cdot n_{v} \quad 1}\left(w^{L} \quad 2 v^{10}-n_{v}-1\right. \\
&\left.B_{v}(w) ; z\right)
\end{aligned}
$$

Since

$$
w^{L-2 v^{10}} \quad n_{v}-1 B_{v}(w)
$$

is a Blaschke product with at most $L-n_{v}-1$ zeros, Lemma 1 gives that this CF extension coincides with

$$
z^{L} \quad 2 v^{10}-n_{v}-1 \quad B_{v}(z)
$$

Thus,

$$
\begin{aligned}
& F_{n_{v}, L}\left(g_{v} ; z\right)=-z^{L}\left[S _ { L } \left(w^{L-2 v^{10}} n_{v}-1\right.\right. \\
&\left.B_{v}(w) ; \frac{1}{z}\right) \\
&\left.-S_{L-n_{v}-1}\left(w^{L \cdot 2 v^{10}-n_{v}} 1^{1} B_{v}(w) ; \frac{1}{z}\right)\right] \\
&=-z^{L}\left(\frac{1}{z}\right)^{L} 2 v^{10}-n_{v}
\end{aligned}\left[S_{2 v^{10}+n_{v}+1}\left(B_{v} ; \frac{1}{z}\right)-S_{2 v 10}\left(B_{v} ; \frac{1}{z}\right)\right] .
$$

and so (see (2.6) and (2.7)) for large v

$$
\begin{aligned}
\left|F_{n_{v}, L}\left(g_{v} ; 1\right)\right| & \geqslant\left|S_{\left(k_{0}+2\right) v^{10}+v}\left(B_{v} ; 1\right)\right|-\left|S_{2 v^{10}\left(B_{v} ; 1\right)}\right| \\
& \geqslant \frac{1}{2^{k_{0}+2}} \log v-50-40 \geqslant c_{1} \log n_{v}
\end{aligned}
$$

where c_{1} depends only on k_{0}, and hence on c.
What we have proved is the following: g_{v} is a polynomial, $\left\|g_{v}\right\| \leqslant 40$ (cf. (2.6)), and for every $L \geqslant L_{n_{v}}$

$$
\left|F_{n_{v}, L}\left(g_{v} ; 1\right)\right|>c_{1} \log n_{v}
$$

and so

$$
\begin{equation*}
\left|F_{n_{v}, L}(g ; 1)-g(1)\right|>\frac{c_{1}}{50} E_{n_{v}}(g) \log n_{v}, \quad L \geqslant L_{n_{v}} \tag{2.8}
\end{equation*}
$$

holds for every large v, say $v \geqslant v_{0}$, if $g=g_{v}$. Here c_{1} depends only on c.
Choose now a sequence $\left\{v_{k}\right\}$ satisfying $n_{v_{k+1}}>L_{m}, m=n_{v_{k}}, k=0,1,2, \ldots$. By Lemma 2 there exists an $\varepsilon_{k+1}^{(k)}>0$ such that if $\left|b_{k+1}\right|<\varepsilon_{k+1}^{(k)}, v=v_{k}$, and
$g=g_{v_{k}}+b_{k+1} g_{v_{k-1}}$, then (2.8) holds for $L_{n} \leqslant L \leqslant L_{m}, n=v_{k}, m=v_{k+1}$. But then (2.8) will hold for every L since for $L>L_{m}$ we get from Lemma 1 and the way the CF approximants are formed that $F_{n, L}(g ; z) \equiv F_{n, L_{m}}(g ; z)$. Using again Lemma 2 we get the existance of an $\varepsilon_{k+2}^{(k)}>0$ such that if $\left|b_{k+1}\right|<\varepsilon_{k+1}^{(k)},\left|b_{k+2}\right|<\varepsilon_{k+2}^{(k)}, v=v_{k}$, and $g=g_{v_{k}}+b_{k+1} g_{v_{k}+1}+b_{k+2} g_{v_{k+2}}$, then (2.8) holds for $L_{n} \leqslant L \leqslant L_{m}, n=v_{k}, m=v_{k+3}$. But again then (2.8) holds for every $L_{n} \leqslant L$. Proceeding this way we get a sequence $\left\{\varepsilon_{j}^{(k)}\right\}_{j=k-1}^{x}$ of positive numbers such that if $\left|b_{j}\right|<\varepsilon_{j}^{(k)}$ are arbitrary, $v=v_{k}$, and

$$
g=g_{v_{k}}+b_{k+1} g_{v_{k+1}}+\cdots+b_{i} g_{v i}, \quad l>\dot{k},
$$

then (2.8) holds for g and all $L \geqslant L_{n}, n=v_{k}$. By Lemma 2,

$$
\begin{equation*}
\left|F_{n_{v}, L}(g ; 1)-g(1)\right| \geqslant \frac{c_{1}}{50} E_{n_{v}}(g) \log n_{v}, \quad v=v_{k} \tag{2.9}
\end{equation*}
$$

holds for every $L \geqslant L_{n_{v}}, v=v_{k}$ if g is of the form

$$
g=g_{v_{k}}+b_{k, 1} g_{v_{k}, 1}+\cdots
$$

with $\left|b_{j}\right|<\varepsilon_{j}^{(k)}, j=k+1, k+2, \ldots$.
This immediately implies (2.9) for every g of the form

$$
g=P+d\left(g_{v_{k}}+b_{k+1} g_{v_{k}, 1}+\cdots\right)
$$

where P is any polynomial of degree at most $n_{v_{k}}$, and $d \neq 0$. Thus, if the sequence $\left\{a_{k}\right\}$ of positive numbers is sufficiently rapidly decreasing (say $\left.a_{k+1} / a_{k}<\min _{1 \leqslant j \leqslant k} \varepsilon_{k+1}^{(j)}, k=1,2, \ldots\right)$, then f defined by

$$
\begin{equation*}
f:=\sum_{k=1}^{\infty} a_{k} g_{v_{k}} \tag{2.10}
\end{equation*}
$$

belongs to \mathscr{A} and satisfies

$$
\left|F_{n, L}(f ; 1)-f(1)\right| \geqslant \frac{c_{1}}{50} E_{n}(f) \log n
$$

for every $n=n_{v_{k}}$ and $L \geqslant L_{n}$.

3. Proof of Theorems 1 and 1^{\prime}

We start with the proof of Theorem 1. We distinguish two cases according to whether

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} L_{n} / n=1 \tag{3.1}
\end{equation*}
$$

or not.

Case I: (3.1) holds. Let $\left\{n_{k}\right\}$ be a subsequence of the natural numbers such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} L_{n_{k}} / n_{k}=1 \tag{3.2}
\end{equation*}
$$

For each k consider the polynomials

$$
\begin{aligned}
P_{k}(z):= & \sigma_{L, m, M}(z):=\left(\frac{z^{M}}{L-M}+\frac{z^{M+1}}{L-M-1}+\cdots+\frac{z^{m}}{L-m}\right) \\
& -\left(\frac{z^{2 L-m}}{L-m}+\frac{z^{2 L-m+1}}{L-m+1}+\cdots+\frac{z^{2 L-M}}{L-M}\right)
\end{aligned}
$$

where $L=L_{n_{k}}, m=n_{k}, M=\left[n_{k} / 2\right]$, which are the modified Fejér polynomials. For these polynomials we have (sce the previous proof)

$$
\left\|P_{k}\right\|=\left\|\sigma_{L, m, M}\right\| \leqslant 20
$$

and

$$
S_{L}\left(P_{k} ; 1\right)=S_{L}\left(\sigma_{L, m, M} ; 1\right)=\frac{1}{L-M}+\cdots+\frac{1}{L-m}>\log \frac{L-M}{L-m}
$$

where, as before $L=L_{n_{k}}, m=n_{k}, M=\left[n_{k} / 2\right]$. Notice that the right-hand side tends to \propto as $k \rightarrow \infty$ because of (3.2).

The cancellation of the first $\left(n_{k}+1\right)$ terms in P_{k} and the truncation of P_{k} at (the power) $L_{n_{k}}$ leaves the zero polynomial and so the CF extension in forming $F_{n_{k}, L}\left(P_{k}\right), L=L_{n_{k}}$, is identically zero. Hence

$$
F_{n_{k}, L}\left(P_{k}\right) \equiv S_{n_{k}}\left(P_{k}\right), L=L_{n_{k}}
$$

which means that, for any $a_{k}>0$,

$$
\begin{equation*}
F_{n_{k}, L}\left(a_{k} P_{k} ; 1\right)>a_{k} \log \frac{L-\left[n_{k} / 2\right]}{L-n_{k}}, \quad L=L_{n_{k}} \tag{3.3}
\end{equation*}
$$

and here the right-hand-side tends to ∞ if $a_{k}>0$ tends to zero sufficiently slowly. By selecting a subsequence of $\left\{n_{k}\right\}$ if necessary, we may assume that $\left\{n_{k}\right\}$ is so sparse that $n_{k+1}>6 n_{k}, 3 n_{k}>L_{n_{k}}$ are true and that

$$
\begin{equation*}
\frac{1}{k^{2}} \log \frac{L-\left[n_{k} / 2\right]}{L-n_{k}} \rightarrow \infty, \quad L=L_{n_{k}} \tag{3.4}
\end{equation*}
$$

as $k \rightarrow \infty$.

By setting

$$
f(z):=\sum_{k=1}^{\infty} \frac{1}{k^{2}} P_{k}(z)
$$

we get a function $f \in \mathscr{A}$ such that for $n=n_{k}, L=L_{n_{k}}, k=1,2, \ldots$,

$$
F_{n, L}(f) \equiv F_{n, I .}\left(\frac{1}{k^{2}} P_{k}\right)+\sum_{j=i}^{k} \frac{1}{j^{2}} P_{j}
$$

and so by setting $a_{k}=1 / k^{2}$ in (3.3) we obtain from (3.4) that

$$
\lim _{k \rightarrow \infty} F_{n_{1} L}(f ; 1)=\infty, \quad n=n_{k}, L=L_{n_{k}}
$$

This proves the result for the case of (3.1).
Case II. Suppose now that

$$
\liminf _{n \rightarrow x} L_{n} / n>1,
$$

i.e., there is a $c>1$ such that $L_{n}>c n$. In this case we can utilize the construction of the proof of Theorem 2 and for a suitable f of the form (2.10) with $a_{k}=1 / k^{2}$ and sufficiently rapidly increasing v_{k} (say $v_{k+1}>L_{v_{k}}$. $\left.v_{k}>\exp (\exp k), k=1,2, \ldots\right)$ we get again

$$
\limsup _{n \rightarrow \infty} F_{n, L_{n}}(f, 1)=\infty
$$

The proof of Theorem 1^{\prime} is a simple category argument. In fact, set

$$
S_{N}:=\left\{f \in \mathscr{A}:\left|F_{n, L_{n}}(f ; 1)\right| \leqslant N \text { for all } n\right\}
$$

By Lemma 2 each S_{N} is closed in \mathscr{A}. Thus, if the statement of Theorem 1 were false, then some S_{N} would contain a ball. But then it would contain a function of the form

$$
g=P+c f
$$

where P is a polynomial, $c>0$, and f is the function from Theorem 1. Since for $n>\operatorname{deg} P$

$$
F_{n, L_{n}}(g)-g=c\left(F_{n, L_{n}}(f)-f\right)
$$

this is impossible and the contradiction obtained proves Theorem 1'.

Rfferences

1. G. M. Goluzin, "Geometric Theory of Functions of a Complex Variable," Translations of Mathematical Monographs, Vol. 26, Amer. Math Soc., Providence, RI, 1969.
2. E. B. Saff and V. Totik, Behavior of polynomials of best uniform approximation, Trans. Amer. Math. Soc., to appear.
3. A. F. Timan, "Theory of Approximation of Functions of a Real Variable," Macmillan, New York, 1963.
4. L. N. Trefethen, Near-circularity of the error curve in complex Chebyshev approximation, J. Approx. Theory 4 (1981), 344-367.

[^0]: *The research of this author was supported, in part, by the National Science Foundation under Grant DMS-862-0098.
 ${ }^{+}$The research of this author was partially supported by the Hungarian National Science Foundation for Research, Grant 1157. This work was done while he visited the University of South Forida, Tampa.

